0-1 Knapsack Geeks for Geeks Solution

BY RECURSION: 



Geeks For Geeks*******************************************************************


class Solve{

    public int knapsack(int w, int[] arr, int[] val, int n){

        if(n==0 || w==0){

            return 0;

        }

        else{

            if(arr[n-1]>w){

                return knapsack(w,arr,val,n-1);

            }

            else{

                return Integer.max(knapsack(w,arr,val,n-1),val[n-1]+knapsack(w-arr[n-1],arr,val,n-1));

            }

        }

    }

}

class Solution 

    //Function to return max value that can be put in the knapsack of capacity W.

   

    static int knapSack(int w, int wt[], int val[], int n) 

    { 

        Solve obj1=new Solve();

         int c=obj1.knapsack(w,wt,val,n);

         return c;

    } 

}


It will display Time Limit Exceeded Error.



-----------------------------------------------------------------------------------------------------------------------------



BY MEMOIZATION


Geeks for Geeks

*************************************************************************


class Solution 

    //Function to return max value that can be put in the knapsack of capacity W.

   

    static int knapSack(int w, int arr[], int val[], int n) 

    { 

        int t[][]=new int[n+1][w+1];

        if(n==0 || w==0){ 

            return 0;

        }

        

        for(int i=0;i<n+1;i++){

            for(int j=0;j<w+1;j++){

                t[i][j]=-1;

            }

        }

        

       

        if(t[n][w]!=-1){ 

            return t[n][w];

        }

        

        else{

             if(arr[n-1]>w){

                    t[n][w]= knapSack(w,arr,val,n-1);

                }

                else{

                    t[n][w]=Integer.max(knapSack(w,arr,val,n-1),val[n-1]+knapSack(w-arr[n-1],arr,val,n-1));

                }

            return t[n][w];

        }

               

    } 

}


It will also display Time Limit Exceeded

--------------------------------------------------------------------------------------------------------------------------



BY TOP-DOWN APPROACH:



class Solution 

    //Function to return max value that can be put in knapsack of capacity W.

   

    static int knapSack(int w, int arr[], int val[], int n) 

    { 

        int t[][]=new int[n+1][w+1];

        if(n==0 || w==0){ 

            return 0;

        }

        

        for(int i=0;i<n+1;i++){

            for(int j=0;j<w+1;j++){

               if(i==0)

                    t[i][j]=0;

                

                if(j==0)

                    t[i][j]=0;

            }

        }

        

       for(int i=01;i<n+1;i++){

for(int j=01;j<w+1;j++){

        

             if(arr[i-1]>j){

                    t[i][j]= t[i-1][j];

                }

                else{

                    t[i][j]=Integer.max(t[i-1][j],val[i-1]+t[i-1][j-arr[i-1]]);

                }

            

       

}

       }

       return t[n][w];

    } 

}



Time:O(N*W)[Nested For Loops] [GFG Time: 0.3/1.3]

Space:O(N*W)[2D array is used]








REASON OF ACCEPTANCE OF TOP-DOWN APPROACH ONLY


In Recursion: Recursive Calls [Time is :a]

In Memorization: Recursive Calls + 2D matrix [Time is:b]

In Top-Down: Only 2D Matrix [Time is: c]


And the result is a>b>c

Recursive calls are piled up in a stack, and they are returned when their result is calculated simultaneously, which takes more time than storing results in a 2d matrix.

In memoization, we store results in a matrix simultaneously but we do have recursive calls.[here we get the answer from the matrix but if that cell has value -1 it means the subproblem is not solved yet then we go for the recursive call.]

While top-down is free of recursive calls. Moreover, it fills the matrix on the previously calculated results of subproblem which is far easier and less time-consuming than calling the same function repeatedly.

That's why the Top-down approach got selected rather than recursive and memoization.



Thanks for Reading.😇


Comments

Popular posts from this blog

Perfect Sum Problem Geeks for Geeks

Array Formation HackerEarth

Recursive Sequence Geeks For Geeks Problem Of The Day 12-02-2024