Equal Sum Partition Memoize Approach

 import java.util.Scanner;



class KnapsackSolve{

public int knapsack(int[] arr, int n, int sum){

int t[][]=new int[n+1][sum+1];

for(int i=0;i<n+1;i++){

for(int j=0;j<sum+1;j++){

t[i][j]=-1;

}

}

if(n==0 && sum==0){

return 1;

}

if(n==0 && sum!=0){

return 0;

}

if(sum==0){

return 1;

}

if(t[n][sum]!=-1){

return t[n][sum]; 

}

else{

if(arr[n-1]>sum){

t[n][sum]=knapsack(arr,n-1,sum);

}

else{

t[n][sum]=Integer.max(knapsack(arr,n-1,sum),knapsack(arr,n-1,sum-arr[n-1]));

}

return t[n][sum];

}

}

}



class EqualSumPartitionMemoize{


public static void main(String arg[]){

Scanner sc=new Scanner(System.in);

int n=sc.nextInt();

int arr[]=new int[n];

for(int i=0;i<n;i++){

arr[i]=sc.nextInt();

}

int sum=0;

for(int i=0;i<n;i++){

sum=sum+arr[i];

}

if(sum%2!=0){

System.out.println("false");

System.out.println("Not possible");

}

else{

KnapsackSolve obj1=new KnapsackSolve();

int c=obj1.knapsack(arr,n,sum/2);

System.out.println(c);

}

}

}



Comments

Popular posts from this blog

Perfect Sum Problem Geeks for Geeks

Array Formation HackerEarth

Recursive Sequence Geeks For Geeks Problem Of The Day 12-02-2024