Longest Common Subsequence Dynamic Programming (Geeks For Geeks , LeetCode, InterviewBit)

 LeetCode:


class Solution {

    public int longestCommonSubsequence(String a, String b) {

     int n=a.length();

        int m=b.length();


        int t[][]=new int[n+1][m+1];

        for(int i=0;i<n+1;i++){

            for(int j=0;j<m+1;j++){

                if(i==0 || j==0){

                    t[i][j]=0;

                }

            }

        }


        for(int i=1;i<n+1;i++){

            for(int j=1;j<m+1;j++){

                if(a.charAt(i-1)==b.charAt(j-1)){

                    t[i][j]=t[i-1][j-1]+1;

                }

                else{

                    t[i][j]=Integer.max(t[i-1][j],t[i][j-1]);

                }

            }

        }

        return t[n][m];

              

        

    }

}


TIME:O(N*M)[2 loops ie. nested][LeetCode Time: 18ms faster than 44.87% ]

SPACE:O(N*M)[Due to usage of 2d matrix][LeetCode Memory: 43.1 MB less than 36.27%]


For printing LCS refer to: 

https://yashboss116.blogspot.com/2021/10/printing-longest-common-subsequence.html

And instead of returning t[n][m], you can write the logic mentioned in the function print of the above link provided.


********************************************************************************


Geeks For Geeks :



class Solution

{

    //Function to find the length of longest common subsequence in two strings.

    static int lcs( int m, int n, String s1, String s2)

    {        

        int temp=n;

n=m;

m=temp;

                int t[][]=new int[n+1][m+1];

for(int i=0;i<n+1;i++){

    for(int j=0;j<m+1;j++){

        if(i==0 || j==0){

            t[i][j]=0;

        }

    }

}

for(int i=1;i<n+1;i++){

    for(int j=1;j<m+1;j++){

        if(s1.charAt(i-1)==s2.charAt(j-1)){

            t[i][j]=1+t[i-1][j-1];

        }

        else{

            t[i][j]=Integer.max(t[i-1][j],t[i][j-1]);

        }

    }

}

return t[n][m];

    }

    

}


TIME:O(N*M)[2 loops ie. nested][Geeks For Geeks Time: 0.4/1.4 ]

SPACE:O(N*M)[Due to usage of 2d matrix]


For printing LCS refer to: 

https://yashboss116.blogspot.com/2021/10/printing-longest-common-subsequence.html

And instead of returning t[n][m], you can write the logic mentioned in the function print of the above link provided.


******************************************************************************



InterviewBit :



public class Solution {
    public int solve(String a, String b) {
        int n=a.length();
        int m=b.length();

        int t[][]=new int[n+1][m+1];
        for(int i=0;i<n+1;i++){
            for(int j=0;j<m+1;j++){
                if(i==0 || j==0){
                    t[i][j]=0;
                }
            }
        }

        for(int i=1;i<n+1;i++){
            for(int j=1;j<m+1;j++){
                if(a.charAt(i-1)==b.charAt(j-1)){
                    t[i][j]=t[i-1][j-1]+1;
                }
                else{
                    t[i][j]=Integer.max(t[i-1][j],t[i][j-1]);
                }
            }
        }
        return t[n][m];
    }
}


TIME:O(N*M)[2 loops ie. nested]

SPACE:O(N*M)[Due to usage of 2d matrix]


For printing LCS refer to: 

https://yashboss116.blogspot.com/2021/10/printing-longest-common-subsequence.html

And instead of returning t[n][m], you can write the logic mentioned in the function print of the above link provided.


**********************************************************************************    


Thanks For Reading😇.

"Share further to increase knowledge treasure.😊"

Comments

Popular posts from this blog

Perfect Sum Problem Geeks for Geeks

Array Formation HackerEarth

Recursive Sequence Geeks For Geeks Problem Of The Day 12-02-2024